References

Campbell, James B., and Randolph H. Wynne. 2011. Introduction to Remote Sensing, Fifth Edition. Guilford Press.
Christian Ginzler. 2021. “Vegetation Height Model NFI.” https://doi.org/10.16904/1000001.1.
Dwyer, John L., David P. Roy, Brian Sauer, Calli B. Jenkerson, Hankui K. Zhang, and Leo Lymburner. 2018. “Analysis Ready Data: Enabling Analysis of the Landsat Archive.” Remote Sensing 10 (9): 1363. https://doi.org/10.3390/rs10091363.
Eggimann, Sven. 2022. “Expanding Urban Green Space with Superblocks.” Land Use Policy 117 (June): 106111. https://doi.org/10.1016/j.landusepol.2022.106111.
Frantz, David. 2019. “FORCELandsat + Sentinel-2 Analysis Ready Data and Beyond.” Remote Sensing 11 (9): 1124. https://doi.org/10.3390/rs11091124.
Fu, Yongyong, Kunkun Liu, Zhangquan Shen, Jinsong Deng, Muye Gan, Xinguo Liu, Dongming Lu, and Ke Wang. 2019. “Mapping Impervious Surfaces in TownRural Transition Belts Using Chinas GF-2 Imagery and Object-Based Deep CNNs.” Remote Sensing 11 (3): 280. https://doi.org/10.3390/rs11030280.
Gupta, Saurabh Kumar, and Arvind Chandra Pandey. 2021. “Spectral Aspects for Monitoring Forest Health in Extreme Season Using Multispectral Imagery.” The Egyptian Journal of Remote Sensing and Space Science 24 (3, Part 2): 579–86. https://doi.org/10.1016/j.ejrs.2021.07.001.
Hadjimitsis, D. G., G. Papadavid, A. Agapiou, K. Themistocleous, M. G. Hadjimitsis, A. Retalis, S. Michaelides, N. Chrysoulakis, L. Toulios, and C. R. I. Clayton. 2010. “Atmospheric Correction for Satellite Remotely Sensed Data Intended for Agricultural Applications: Impact on Vegetation Indices.” Natural Hazards and Earth System Sciences 10 (1): 89–95. https://doi.org/10.5194/nhess-10-89-2010.
“Historic Environment.” n.d. https://www.cityoflondon.gov.uk/services/planning/cityoflondon.gov.uk/services/planning/historic-environment.
Holloway, Jacinta, and Kerrie Mengersen. 2018. “Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review.” Remote Sensing 10 (9): 1365. https://doi.org/10.3390/rs10091365.
Huang, C., L. S. Davis, and J. R. G. Townshend. 2002. “An Assessment of Support Vector Machines for Land Cover Classification.” International Journal of Remote Sensing 23 (4): 725–49. https://doi.org/10.1080/01431160110040323.
Jovanović, Dušan, Milan Gavrilović, Dubravka Sladić, Aleksandra Radulović, and Miro Govedarica. 2021. “Building Change Detection Method to Support Register of Identified Changes on Buildings.” Remote Sensing 13 (16): 3150. https://doi.org/10.3390/rs13163150.
Lausch, Angela, Stefan Erasmi, Douglas J. King, Paul Magdon, and Marco Heurich. 2016. “Understanding Forest Health with Remote Sensing -Part IA Review of Spectral Traits, Processes and Remote-Sensing Characteristics.” Remote Sensing 8 (12): 1029. https://doi.org/10.3390/rs8121029.
Lawrence, Rick L., and Christopher J. Moran. 2015. “The AmericaView Classification Methods Accuracy Comparison Project: A Rigorous Approach for Model Selection.” Remote Sensing of Environment 170 (December): 115–20. https://doi.org/10.1016/j.rse.2015.09.008.
Lechner, Alex M., Giles M. Foody, and Doreen S. Boyd. 2020. “Applications in Remote Sensing to Forest Ecology and Management.” One Earth 2 (5): 405–12. https://doi.org/10.1016/j.oneear.2020.05.001.
Lewis, Simon L., David P. Edwards, and David Galbraith. 2015. “Increasing Human Dominance of Tropical Forests.” Science 349 (6250): 827–32. https://doi.org/10.1126/science.aaa9932.
Li, Congcong, Jie Wang, Lei Wang, Luanyun Hu, and Peng Gong. 2014. “Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery.” Remote Sensing 6 (2): 964–83. https://doi.org/10.3390/rs6020964.
“Living Textbook | Relative Atmospheric Correction | by ITC, University of Twente.” n.d. https://ltb.itc.utwente.nl/498/concept/81688.
Maxwell, Aaron E., Timothy A. Warner, and Fang Fang. 2018. “Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review.” International Journal of Remote Sensing 39 (9): 2784–2817. https://doi.org/10.1080/01431161.2018.1433343.
Nieuwenhuijsen, Mark J., and Haneen Khreis. 2016. “Car Free Cities: Pathway to Healthy Urban Living.” Environment International 94 (September): 251–62. https://doi.org/10.1016/j.envint.2016.05.032.
Pekel, Jean-François, Andrew Cottam, Noel Gorelick, and Alan S. Belward. 2016. “High-Resolution Mapping of Global Surface Water and Its Long-Term Changes.” Nature 540 (7633): 418–22. https://doi.org/10.1038/nature20584.
Suel, Esra, John W. Polak, James E. Bennett, and Majid Ezzati. 2019. “Measuring Social, Environmental and Health Inequalities Using Deep Learning and Street Imagery.” Scientific Reports 9 (1): 6229. https://doi.org/10.1038/s41598-019-42036-w.
Tamiminia, Haifa, Bahram Salehi, Masoud Mahdianpari, Lindi Quackenbush, Sarina Adeli, and Brian Brisco. 2020a. “Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review.” ISPRS Journal of Photogrammetry and Remote Sensing 164 (June): 152–70. https://doi.org/10.1016/j.isprsjprs.2020.04.001.
———. 2020b. “Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review.” ISPRS Journal of Photogrammetry and Remote Sensing 164 (June): 152–70. https://doi.org/10.1016/j.isprsjprs.2020.04.001.
Tang, Zixia, Mengmeng Li, and Xiaoqin Wang. 2020. “Mapping Tea Plantations from VHR Images Using OBIA and Convolutional Neural Networks.” Remote Sensing 12 (18): 2935. https://doi.org/10.3390/rs12182935.
Wang, Lei, Yang Chen, Luliang Tang, Rongshuang Fan, and Yunlong Yao. 2018. “Object-Based Convolutional Neural Networks for Cloud and Snow Detection in High-Resolution Multispectral Imagers.” Water 10 (11): 1666. https://doi.org/10.3390/w10111666.
Xofis, Panteleimon, and Konstantinos Poirazidis. 2018. “Combining Different Spatio-Temporal Resolution Images to Depict Landscape Dynamics and Guide Wildlife Management.” Biological Conservation 218 (February): 10–17. https://doi.org/10.1016/j.biocon.2017.12.003.